Stroke vs Time

<table>
<thead>
<tr>
<th>1st cycle</th>
<th>L 100 mm</th>
<th>25°C</th>
<th>160 mA</th>
<th>170 MPa</th>
</tr>
</thead>
</table>

- **Stroke (%):**
 - 0.2
 - 0.3
 - 0.4
 - 0.5
 - 0.6
 - 0.7
 - 0.8
 - 0.9
 - 1

- **Time (s):**
 - 0
 - 20
 - 60
 - 140

- **Current (mA):**
 - 180

Cycle time vs Stress

<table>
<thead>
<tr>
<th>25°C</th>
<th>130 mA</th>
<th>3,5%</th>
</tr>
</thead>
</table>

- **Stress (MPa):**
 - 150
 - 200
 - 250
 - 300
 - 350
 - 400

- **Time (ms):**
 - 0
 - 200
 - 400
 - 600
 - 800

Cycle time vs Current

<table>
<thead>
<tr>
<th>25°C</th>
<th>170 MPa</th>
<th>3,5%</th>
</tr>
</thead>
</table>

- **Time (s):**
 - 0
 - 0.4
 - 0.8
 - 1.2
 - 1.6

- **Current (mA):**
 - 80
 - 100
 - 120
 - 140
 - 160

- **Time (ms):**
 - actuation
 - heating
 - cooling

Cycle time vs Temperature

<table>
<thead>
<tr>
<th>160 mA</th>
<th>200 MPa</th>
<th>3,5%</th>
</tr>
</thead>
</table>

- **Temperature (°C):**
 - -10
 - -20
 - -30
 - 0
 - 10
 - 20
 - 30
 - 40
 - 50
 - 60

- **Time (ms):**
 - actuation
 - heating
 - cooling

The SAES Group manufacturing companies are ISO9001 certified, the Asian and Italian companies are also ISO14001 certified. Full information about our certifications for each company of the Group are available on our website at: www.saesgroup.com

© SAES Group. Printed in Italy. All rights reserved. SAES® and SmarFlex® are registered trademarks of SAES Group. SAES Group reserves the right to change or modify product specifications at any time without notice.
SmartFlex®
76 μm

Stroke vs Time
- 1st cycle
- L 100 mm
- 25°C
- 240 mA
- 170 MPa

Cycle time vs Stress
- 25°C
- 200 mA
- 3,5%

Cycle time vs Current
- 25°C
- 170 MPa
- 3,5%

Cycle time vs Temperature
- 240 mA
- 240 MPa
- 3,5%

SAES Group
www.saesgroup.com
sma@saes-group.com
SmartFlex®
100 μm

1. Stroke vs Time
 - 1st cycle
 - L 100 mm
 - 25°C
 - 380 mA
 - 170 MPa

2. Cycle time vs Stress
 - 25°C
 - 300 mA
 - 3.5%

3. Cycle time vs Current
 - 25°C
 - 170 MPa
 - 3.5%

4. Cycle time vs Temperature
 - 380 mA
 - 200 MPa
 - 3.5%

The SAES Group manufacturing companies are ISO9001 certified, the Asian and Italian companies are also ISO14001 certified. Full information about our certifications for each company of the Group are available on our website at: www.saesgroup.com

© SAES Group. Printed in Italy. All rights reserved. SAES® and SmarFlex® are registered trademarks of SAES Group. SAES Group reserves the right to change or modify product specifications at any time without notice.
SmartFlex®
150 μm

Stroke vs Time
- 1st cycle
- L 100 mm
- 25°C
- 750 mA
- 170 MPa

Cycle time vs Stress
- 25°C
- 600 mA
- 3,5%

Cycle time vs Current
- 25°C
- 170 MPa
- 3,5%

Cycle time vs Temperature
- 750 mA
- 200 MPa
- 3,5%
Stroke vs Time
1° cycle | L 100 mm | 25°C | 2.1 A | 170 MPa

Cycle time vs Stress
25°C | 1.8 A | 3.5%

Cycle time vs Current
25°C | 170 MPa | 3.5%

Cycle time vs Temperature
2.1 A | 200 MPa | 3.5%
Stroke vs Time
- 1st cycle
- L 100 mm
- 25°C
- 3.8 A
- 170 MPa

Cycle time vs Stress
- 25°C
- 3 A
- 3.5%

Cycle time vs Current
- 25°C
- 170 MPa
- 3.5%

Cycle time vs Temperature
- 3.8 A
- 200 MPa
- 3.5%

The SAES Group manufacturing companies are ISO9001 certified, the Asian and Italian companies are also ISO14001 certified. Full information about our certifications for each company of the Group are available on our website at: www.saesgroup.com

© SAES Group. Printed in Italy. All rights reserved. SAES® and SmartFlex® are registered trademarks of SAES Group. SAES Group reserves the right to change or modify product specifications at any time without notice.
SmartFlex®
500 μm

Stroke vs Time
1st cycle | L 100 mm | 25°C | 5.7 A | 170 MPa

Cycle time vs Stress
25°C | 4 A | 3.5%

Cycle time vs Current
25°C | 170 MPa | 3.5%

Cycle time vs Temperature
5.7 A | 200 MPa | 3.5%

SAES Group
www.saesgroup.com
sma@saes-group.com

making innovation happen, together
Different cooling methods improving response time after actuation.

<table>
<thead>
<tr>
<th>Method</th>
<th>Speed performance's increasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard air convection</td>
<td>1:1</td>
</tr>
<tr>
<td>Solid Heat Sink Materials</td>
<td>2:1</td>
</tr>
<tr>
<td>Forced Air</td>
<td>4:1</td>
</tr>
<tr>
<td>Heat Conductive Grease</td>
<td>8:1</td>
</tr>
<tr>
<td>Silicon</td>
<td>10:1</td>
</tr>
<tr>
<td>Oil Immersion</td>
<td>25:1</td>
</tr>
<tr>
<td>Water with Glycol</td>
<td>25:1</td>
</tr>
</tbody>
</table>

* Getting quicker time response requires more current to heat the wire.
SmartFlex® 300 μm with silicon sleeve

Different cooling methods improving response time after actuation

<table>
<thead>
<tr>
<th>Method</th>
<th>Speed performance's increasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard air convection</td>
<td>1:1</td>
</tr>
<tr>
<td>Solid Heat Sink Materials</td>
<td>2:1</td>
</tr>
<tr>
<td>Forced Air</td>
<td>4:1</td>
</tr>
<tr>
<td>Heat Conductive Grease</td>
<td>8:1</td>
</tr>
<tr>
<td>Silicon</td>
<td>10:1</td>
</tr>
<tr>
<td>Oil Immersion</td>
<td>25:1</td>
</tr>
<tr>
<td>Water with Glycol</td>
<td>100:1</td>
</tr>
</tbody>
</table>

Increased cooling time performances

Stroke vs Time First cycle
- L 100 mm
- 25°C
- 3.5 A
- 170 MPa

Cycle time vs Stress
- 25°C
- 3.5 A
- 3.5%

Cycle time vs Current
- 25°C
- 170 MPa
- 3.5%

Cycle time vs Temperature
- 3.5 A
- 170 MPa
- 3.5%

* Getting quicker time response requires more current to heat the wire
Increased cooling time performances

<table>
<thead>
<tr>
<th>Different cooling methods improving response time after actuation</th>
<th>Speed performance’s increasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard air convection</td>
<td>1:1</td>
</tr>
<tr>
<td>Solid Heat Sink Materials</td>
<td>2:1</td>
</tr>
<tr>
<td>Forced Air</td>
<td>4:1</td>
</tr>
<tr>
<td>Heat Conductive Grease</td>
<td>8:1</td>
</tr>
<tr>
<td>Silicon</td>
<td>10:1</td>
</tr>
<tr>
<td>Oil Immersion</td>
<td>25:1</td>
</tr>
<tr>
<td>Water with Glycol</td>
<td>100:1</td>
</tr>
</tbody>
</table>

Stroke vs Time First cycle
| L 100 mm | 25°C | 6,5 A | 170 MPa |

Cycle time vs Stress
| 25°C | 6,0 A | 3,5% |

Cycle time vs Current
| 25°C | 170 MPa | 3,5% |

Cycle time vs Temperature
| 6,0 A | 170 MPa | 3,5% |

* Getting quicker time response requires more current to heat the wire.
If your application requires an electro-mechanical termination we can support you with different crimp solutions according to your requirements. Our standard solutions are specified below. For new design we are available to study and develop customized part for you. Crimped Smartflex wires can be ordered both for prototypes and large volume production.

Barrel Crimp

<table>
<thead>
<tr>
<th>Wire Diameter [μm]</th>
<th>50</th>
<th>76</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel 4 mm</td>
<td>1,6</td>
<td>3,6</td>
<td>6,3</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>Barrel 2 mm</td>
<td>1,2</td>
<td>2,7</td>
<td>4,7</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>

Typical delivery packaging

Design parameters to order crimped Smartflex wire

La, Lb ratio: 5:1
CRIMPS for SmartFlex® Wires

Ring Type Crimp

Typical Pull-Out Max Force [N]

<table>
<thead>
<tr>
<th>Wire Diameter [μm]</th>
<th>150</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Type</td>
<td>10</td>
<td>19</td>
<td>35</td>
</tr>
</tbody>
</table>

T Type Crimp

Typical Pull-Out Max Force [N]

<table>
<thead>
<tr>
<th>Wire Diameter [μm]</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>T type</td>
<td>50</td>
<td>80</td>
</tr>
</tbody>
</table>

Book Crimp

Typical Pull-Out Max Force [N]

<table>
<thead>
<tr>
<th>Wire Diameter [μm]</th>
<th>100</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>T type</td>
<td>4.7</td>
<td>15</td>
</tr>
</tbody>
</table>

NOTE: SAES can support you to study and develop different book crimp to weld on PCB

The SAES Group manufacturing companies are ISO9001 certified, the Asian and Italian companies are also ISO14001 certified. Full information about our certifications for each company of the Group are available on our website at: www.saesgroup.com

© SAES Group. Printed in Italy. All rights reserved. SAES® and SmartFlex® are registered trademarks of SAES Group. SAES Group reserves the right to change or modify product specifications at any time without notice.
SMA compression springs can be used as very fast and miniaturized thermal-actuators. When heated above As (austenite start temperature) they expand developing a high force.

Mechanical and functional characteristics of some exemplifying compression spring

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>130</td>
<td>1,5</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>1,5</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>2,2</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>1,5</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0,6</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

SMA compression springs can be customized according to your design and application requirements.
SMA tensile springs can be used as very fast and miniaturized thermal-actuators. When heated above As (austenite start temperature) they contract, developing a high force.

Typical behaviour of a SMA tensile spring

SMA tensile springs can be customized according to your design and application requirements.

Mechanical and functional characteristics of some exemplifying tensile spring

<table>
<thead>
<tr>
<th>D [mm]</th>
<th>L₀ [mm]</th>
<th>d [mm]</th>
<th>F [N]</th>
<th>s [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Diameter</td>
<td>Free Length</td>
<td>Wire Diameter</td>
<td>Typical Force</td>
<td>Typical Stroke</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>1,5</td>
<td>10</td>
<td>160</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>1,5</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>0,8</td>
<td>3</td>
<td>100</td>
</tr>
</tbody>
</table>

SMA tensile springs can be customized according to your design and application requirements.